Network experiment demonstrates converse symmetry breaking

Ferenc Molnar, Takashi Nishikawa, Adilson E. Motter
2020 Nature Physics  
Symmetry breaking--the phenomenon in which the symmetry of a system is not inherited by its stable states--underlies pattern formation, superconductivity, and numerous other effects. Recent theoretical work has established the possibility of converse symmetry breaking (CSB), a phenomenon in which the stable states are symmetric only when the system itself is not. This includes scenarios in which interacting entities are required to be nonidentical in order to exhibit identical behavior, such as
more » ... in reaching consensus. Here we present an experimental demonstration of this phenomenon. Using a network of alternating-current electromechanical oscillators, we show that their ability to achieve identical frequency synchronization is enhanced when the oscillators are tuned to be suitably nonidentical and that CSB persists for a range of noise levels. These results have implications for the optimization and control of network dynamics in a broad class of systems whose function benefits from harnessing uniform behavior.
doi:10.1038/s41567-019-0742-y fatcat:cyfwpxwd45hnrhbxekcdsvppsy