First order convergence of matroids [article]

Frantisek Kardos and Daniel Kral and Anita Liebenau and Lukas Mach
<span title="2016-08-13">2016</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
The model theory based notion of the first order convergence unifies the notions of the left-convergence for dense structures and the Benjamini-Schramm convergence for sparse structures. It is known that every first order convergent sequence of graphs with bounded tree-depth can be represented by an analytic limit object called a limit modeling. We establish the matroid counterpart of this result: every first order convergent sequence of matroids with bounded branch-depth representable over a
more &raquo; ... xed finite field has a limit modeling, i.e., there exists an infinite matroid with the elements forming a probability space that has asymptotically the same first order properties. We show that neither of the bounded branch-depth assumption nor the representability assumption can be removed.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1501.06518v3</a> <a target="_blank" rel="external noopener" href="">fatcat:ufrczsvzzbbs3lqvzzrndfeukm</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>