Using Convolution Neural Network for Defective Image Classification of Industrial Components

Hao Wu, Zhi Zhou, Fazlullah Khan
2021 Mobile Information Systems  
Computer vision provides effective solutions in many imaging relation problems, including automatic image segmentation and classification. Artificially trained models can be employed to tag images and identify objects spontaneously. In large-scale manufacturing, industrial cameras are utilized to take constant images of components for several reasons. Due to the limitations caused by motion, lens distortion, and noise, some defective images are captured, which are to be identified and
more » ... One common way to address this problem is by looking into these images manually. However, this solution is not only very time-consuming but is also inaccurate. The paper proposes a deep learning-based artificially intelligent system that can quickly train and identify faulty images. For this purpose, a pretrained convolution neural network based on the PyTorch framework is employed to extract discriminating features from the dataset, which is then used for the classification task. In order to eliminate the chances of overfitting, the proposed model also employed Dropout technology to adjust the network. The experimental study reveals that the system can precisely classify the normal and defective images with an accuracy of over 91%.
doi:10.1155/2021/9092589 fatcat:sep3lpggzfbglfbjuofu3cysry