A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2015; you can also visit the original URL.
The file type is application/pdf
.
Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery
2014
Remote Sensing
Although a large number of new image classification algorithms have been developed, they are rarely tested with the same classification task. In this research, with the same Landsat Thematic Mapper (TM) data set and the same classification scheme over Guangzhou City, China, we tested two unsupervised and 13 supervised classification algorithms, including a number of machine learning algorithms that became popular in remote sensing during the past 20 years. Our analysis focused primarily on the
doi:10.3390/rs6020964
fatcat:uwp2mg44snayplcpv76rzdzvii