Hybrid Energy Management System for Operation of Wind Farm System Considering Grid-Code Constraints

Van-Hai Bui, Akhtar Hussain, Woon-Gyu Lee, Hak-Man Kim
2019 Energies  
In this paper, a hybrid energy management system is developed to optimize the operation of a wind farm (WF) by combining centralized and decentralized approaches. A two-stage optimization strategy, including distributed information sharing (stage 1); and centralized optimization (stage 2) is proposed to find out the optimal set-points of wind turbine generators (WTGs) considering grid-code constraints. In stage 1, cluster energy management systems (CEMSs) and transmission system operator (TSO)
more » ... nteract with their neighboring agents to share information using diffusion strategy and then determine the mismatch power amount between the current output power of WF and the required power from TSO. This amount of mismatch power is optimally allocated to all clusters through the CEMSs. In stage 2, a mixed-integer linear programming (MILP)-based optimization model is developed for each CEMS to find out the optimal set-points of WTGs in the corresponding cluster. The CEMSs are responsible for ensuring the operation of WF in accordance with the requirements of TSO (i.e., grid-code constraints) and also minimizing the power deviation for the set-points of WTGs in each cluster. The minimization of power deviation helps to reduce the internal power fluctuations inside each cluster. Finally, to evaluate the effectiveness of the proposed method, several case studies are analyzed in the simulations section for operation of a WF with 20 WTGs in four different clusters.
doi:10.3390/en12244672 fatcat:b6r3d3xbircxzp72mx4j3r4hle