Spatial Control of Gene Expression by Nanocarriers Using Heparin Masking and Ultrasound-Targeted Microbubble Destruction [component]

unpublished
We developed a method to spatially control gene expression following nonviral delivery of DNA. This method includes surface-modifying DNA nanocarriers with heparin to inhibit passive gene transfer in both the target and the off-target tissues and using ultrasound-targeted microbubble destruction (UTMD) to selectively activate heparin-inhibited gene transfer at the target site. We observed that the engraftment of heparin onto the surface of cationic liposomes reduced off-target gene expression
more » ... the liver, a major site of nanoplex accumulation, by more than 700-fold compared to the nonheparinized PEGylated liposomes. We further observed that tumor-directed UTMD increased gene transfer with heparin-modified nanoplexes by more than 10-fold. This method augmented tumor-to-liver selectivity of gene expression by 4000-fold compared to controls. We conclude that heparinization of DNA nanocarriers in conjunction with localized activation of gene transfer by UTMD may enable greater spatial control over genetic therapy.
doi:10.1021/acsnano.6b01199.s001 fatcat:flqj3dcuh5dudgfzwhflwga6ea