Squares in Fork Arrow Logic

Renata P. de Freitas, Jorge P. Viana, Mario R. F. Benevides, Sheila R. M. Veloso, Paulo A. S. Veloso
2003 Journal of Philosophical Logic  
In this paper we show that the class of fork squares has a complete orthodox axiomatization in fork arrow logic (FAL). This result may be seen as an orthodox counterpart of Venema's non-orthodox axiomatization for the class of squares in arrow logic. FAL is the modal logic of fork algebras (FAs) just as arrow logic is the modal logic of relation algebras (RAs). FAs extend RAs by a binary fork operator and are axiomatized by adding three equations to RAs equational axiomatization. A proper FA is
more » ... an algebra of relations where the fork is induced by an injective operation coding pair formation. In contrast to RAs, FAs are representable by proper ones and their equational theory has the expressive power of full first-order logic. A square semantics (the set of arrows is U × U for some set U) for arrow logic was defined by Y. Venema. Due to the negative results about the finite axiomatizability of representable RAs, Venema provided a non-orthodox finite axiomatization for arrow logic by adding a new rule governing the applications of a difference operator. We address here the question of extending the type of relational structures to define orthodox axiomatizations for the class of squares. Given the connections between this problem and the finitization problem addressed by I. Németi, we suspect that this cannot be done by using only logical operations. The modal version of the FA equations provides an orthodox axiomatization for FAL which is complete in view of the representability of FAs. Here we review this result and carry it further to prove that this orthodox axiomatization for FAL also axiomatizes the class of fork squares.
doi:10.1023/a:1024847106313 fatcat:2fpe5w6f3bchzpy575rogr6yyq