Orbits on points and lines in finite linear and quasilinear spaces

Aart Blokhuis, Andries Brouwer, Ann Delandtsheer, Jean Doyen
<span title="">1987</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/z77xaqun7bcxjkh75wb7iseaty" style="color: black;">Journal of combinatorial theory. Series A</a> </i> &nbsp;
Given two positive integers rr and i., we prove that there exists a finite linear space whose automorphism group has exactly rr orbits on points and i. orbits on lines if and only if rr;;; i.. < 19~7 Arndcmic Press. Inc.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0097-3165(87)90069-0">doi:10.1016/0097-3165(87)90069-0</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/volocgki2jfm5hn2zwvzzctbrm">fatcat:volocgki2jfm5hn2zwvzzctbrm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180721014259/https://ir.cwi.nl/pub/1763/1763D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/70/18/701860ee992cc47939a07620c7e68ccf11174e10.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/0097-3165(87)90069-0"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>