A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Automatic Extraction of Water and Shadow from SAR Images Based on a Multi-Resolution Dense Encoder and Decoder Network
2019
Sensors
The water and shadow areas in SAR images contain rich information for various applications, which cannot be extracted automatically and precisely at present. To handle this problem, a new framework called Multi-Resolution Dense Encoder and Decoder (MRDED) network is proposed, which integrates Convolutional Neural Network (CNN), Residual Network (ResNet), Dense Convolutional Network (DenseNet), Global Convolutional Network (GCN), and Convolutional Long Short-Term Memory (ConvLSTM). MRDED
doi:10.3390/s19163576
fatcat:qfbu3wvpevfq7m63kv7ely4bsi