Early auditory processing in musicians and dancers during a contemporary dance piece

Hanna Poikonen, Petri Toiviainen, Mari Tervaniemi
2016 Scientific Reports  
The neural responses to simple tones and short sound sequences have been studied extensively. However, in reality the sounds surrounding us are spectrally and temporally complex, dynamic and overlapping. Thus, research using natural sounds is crucial in understanding the operation of the brain in its natural environment. Music is an excellent example of natural stimulation which, in addition to sensory responses, elicits vast cognitive and emotional processes in the brain. Here we show that the
more » ... preattentive P50 response evoked by rapid increases in timbral brightness during continuous music is enhanced in dancers when compared to musicians and laymen. In dance, fast changes in brightness are often emphasized with a significant change in movement. In addition, the auditory N100 and P200 responses are suppressed and sped up in dancers, musicians and laymen when music is accompanied with a dance choreography. These results were obtained with a novel event-related potential (ERP) method for natural music. They suggest that we can begin studying the brain with long pieces of natural music using the ERP method of electroencephalography (EEG) as has already been done with functional magnetic resonance (fMRI), these two brain imaging methods complementing each other. by more simple multimodal stimuli 17,18 . Since professional background in music has been shown to facilitate the brain processes for individual sounds compared to laymen 19,20 , we hypothesized that these kinds of changes would also be detected during continuous music listening. Further, the comparison of dancers and musicians may help in defining whether these changes are influenced by personal history in intense listening of music or in active music-making. Indeed, dancers have a different approach to music than musicians -for dancers the music is a tool for the kinesthetic expression whereas for musicians the music is the essence itself. Results The musical features under interest evoked auditory brain responses resembling those recorded in traditional ERP paradigms. Figure 1 shows the grand-average ERPs in the auditory and audio-visual conditions of the musical feature brightness for musicians, dancers and laymen. Figure 2 shows the recapitulation of the grand-average ERPs in the auditory and audio-visual conditions of brightness, RMS, zero-crossing rate and spectral flux for musicians, dancers and laymen. Scalp maps of the P50, N100 and P200 responses in the auditory and audio-visual condition of brightness for musicians, dancers and laymen are presented in Fig. 3 . Statistical evaluation of the data indicated that most but not all of the P50 and N100 responses differed from the zero baseline while all the P200 responses did (see Table 1 for the t-tests of P50 response and Table 2 of N100 response). In the repeated measures ANOVA, Group (musicians, dancers, control group) was set as the between-subject factor and Modality (auditory, audio-visual stimulus) and Musical feature (brightness, spectral flux, RMS, zero-crossing rate) were set as the within-subject factors.
doi:10.1038/srep33056 pmid:27611929 pmcid:PMC5017142 fatcat:5cncvbbkujdrvffxtvnbo7xsbq