Magnetic DNA random access memory with nanopore readouts and exponentially-scaled combinatorial addressing [article]

Billy T Lau, Shubham Chandak, Sharmili Roy, Kedar Tatawadi, Mary Wootters, Tsachy Weissman, Hanlee P Ji
2021 bioRxiv   pre-print
The storage of data in DNA typically involves encoding and synthesizing data into short oligonucleotides, followed by reading with a sequencing instrument. Major challenges include the molecular consumption of synthesized DNA, issues with basecalling errors, and limitations with scaling up read access operations for individual data elements. Addressing these challenges, we describe a DNA storage system called MDRAM (Magnetic DNA-based Random Access Memory) that enables repetitive and efficient
more » ... eadouts of targeted files with nanopore-based sequencing. Through conjugation of synthesized DNA to magnetic beads, we enabled repeated readouts of data while preserving the original DNA analyte and maintaining data readout quality. MDRAM also utilizes an efficient convolutional coding scheme that leverages soft information in raw nanopore sequencing signals to achieve information reading costs comparable to Illumina sequencing despite substantially higher error rates. Finally, we demonstrate a proof-of-concept DNA-based proto-filesystem that enables an exponentially-scalable data address space using only small numbers of targeting primers for assembly and readout.
doi:10.1101/2021.09.15.460571 fatcat:pqp5oppnofetpo5xzlkob3ncjq