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Abstract

Introduction Mass spectrometry-based proteomics is actively embracing quantitative, sin-

gle cell-level analyses. Indeed, recent advances in sample preparation and mass spectrometry

(MS) have enabled the emergence of quantitative MS-based single-cell proteomics (SCP). While

exciting and promising, SCP still has many rough edges. The current analysis work�ows are

custom and build from scratch. The �eld is therefore craving for standardized software that

promotes principled and reproducible SCP data analyses.

Areas covered This special report represents the �rst step toward the formalization of

standard SCP data analysis. scp, the software that accompanies this work can successfully

reproduces one of the landmark data in the �eld of SCP. We created a repository containing

the reproduction work�ow with comprehensive documentation in order to favor further dissem-

ination and improvement of SCP data analyses.

Expert opinion Reproducing SCP data analyses uncovers important challenges in SCP data

analysis. We describe two such challenges in detail: batch correction and data missingness. We

provide the current state-of-the-art and illustrate the associated limitations. We also highlights

the intimate dependence that exists between batch e�ects and data missingness and provides

future tracks for dealing with these exciting challenges.

Keywords: mass spectrometry, proteomics, single-cell, batch correction, imputation, R, Biocon-

ductor, software, reproducible research.
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1 Article highlights

� Single-cell proteomics (SCP) is emerging thanks to several recent technological advances, but

further progress is lagging due to principled and systematic data analysis.

� This work o�ers a standardized solution for the processing of SCP data demonstrated by the

reproduction of a landmark SCP work.

� Two important challenges remain: batch e�ects and data missingness. Furthermore, these

challenges are not independent and therefore need to be modeled simultaneously.

2 Introduction

High-throughput single-cell assays are instrumental in highlighting the biology of heterogeneous

cell populations, tissues and cell di�erentiation processes. Single cell RNA sequencing (scRNA-

seq) is a prominent player, thanks to is throughput, technical diversity, and computational tools

that support its analysis and interpretation. scRNA-seq is however blind to the many biologically

active gene products, proteins and their many proteoforms. Mass spectrometry-based approaches

to study the proteome of single cells are emerging (Slavov, 2021, 2020; Kelly, 2020; Ctortecka and

Mechtler, 2021), using the wide range of possibilities o�ered by the technology, including miniaturized

sample preparation, labeled and label-free quantitation, as well as data dependent and independent

approaches. All these avenues promise to be valuable contributions to the single cell tool kit.

In this work, we will focus on the processing of mass spectrometry-based single cell quantitative

data, as produced from the raw data using widely used tools such as, for example, MaxQuant

(Tyanova et al., 2016) or Proteome Discoverer (Thermo Fisher Scienti�c). As expected for a young

and fast evolving �eld such as single-cell proteomics (SCP), there are yet no best practice nor any

consensus as to how to adequately process such data. Some studies started from protein and peptide

tables as produced by MaxQuant followed by manual data manipulation using Excel (Zhu et al.,

2019; Cong et al., 2020), others proceed with Perseus (Zhu et al., 2018b,a; Brunner et al., 2020), other

use private in-house scripts (Dou et al., 2019; Zhu et al., 2019), while others publish they custom

scripts openly (Schoof et al., 2019; Specht et al., 2021). In this work, will present the reproduction

of the open-source scripts of SCoPE2 published by Specht et al. (2021) and their implementation

as a formal R/Bioconductor package named scp. Reproducing this work allows the formalization

and standardization of the current SCP data processing pipeline, but it also brings to light two
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important challenges for SCP data analysis that we will address in the Expert Opinion section.

3 Reproducing the SCoPE2 analysis

We focused on reproducing the SCoPE2 analysis provided in Specht et al. (2021) since this work

puts a milestone in the SCP �eld by reporting the acquisition of over a thousand single-cells and

proving that SCP has reached its potential of becoming a high-throughput technology (Specht and

Slavov, 2018). The authors openly shared their raw and quantitative data, as well as their processing

scripts. Furthermore, they implemented new metrics and quality controls that could broadly bene�t

to the �eld. Although the provided code could fully repeat their results, it is di�cult to read for

non expert programmers and lacks modularity making it tedious to reuse and hard to adapt and

extend. We therefore decided to provide a standardized and modularized framework to reproduce

this analysis and hence o�er a common ground for SCP data analysis and method development.

Our data structure is relying on two curated R/Bioconductor (Huber et al. (2015)) data classes:

QFeatures (Gatto (2020)) and SingleCellExperiment (Amezquita et al. (2019)). QFeatures is a

data object model dedicated to the manipulation and processing of MS-based quantitative data. It

explicitly records the successive steps to allow users to navigate up and down the di�erent MS levels.

SingleCellExperiment is another data object model designed as an e�cient data container that

serves as an interface to state-of-the-art methods and algorithms for single-cell data. Our framework

combines the two classes to inherit from their respective advantages. Based on this data framework,

we built two pieces of software: scpdata and scp.

The scp package extends the functionality of QFeatures to SCP applications. For instance, it

includes functionality that was implemented in SCoPE2, such as normalization by a reference chan-

nel, �ltering single-cells based on the median coe�cient of variation, or �ltering of peptide-spectrum

matches (PSM) based on the single-cell to carrier ratio (SCR). A core feature of the scp package

is the conversion of standard data tables, like those exported by MaxQuant or ProteomeDiscover

(Thermo Fisher Scienti�c), to scp formatted data objects along with sample metadata. scpdata dis-

seminates SCP data sets formatted using our data structure. The purpose of scpdata is three-fold.

First, it is an ideal platform for data sharing and hence lays the ground for open and reproducible

science in SCP. For instance, the package provides, among others, the PSM, peptide and protein data

supplied in Specht et al. (2021) that was used for this replication study. Second, it facilitates the

access for developers to SCP data to build and benchmark new methodologies. Finally, the scpdata
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package facilitates the access for new users to data in the context of training and demonstration.

The �rst step of the reproduction was to retrieve the SCoPE2 data. The data are hosted on

Google Drive and are clearly linked from the authors' web page (https://scope2.slavovlab.net/docs/data).

We formatted the data set using scp and included it in scpdata along with comprehensive docu-

mentation about data content, data acquisition and data collection. This is true for any data set in

scpdata. Next, we retrieved the SCoPE2 code from the authors' GitHub repository1 and formal-

ized the key steps of the work�ow (Figure 1A). Most steps implemented in SCoPE2 are routinely

performed in bulk proteomics and are easily handled by existing software such as QFeatures. The

reuse of existing code is essential in software development because it allows the developer to focus

on the innovative aspects of its research �eld without losing time reinventing the wheel (Huber et al.

(2015)). Next, we implemented the few missing steps in scp and provided clear documentation and

examples. Finally, we wrote a new work�ow that fully reproduced the results of SCoPE2 script,

using our standardized software. The output obtained after running the scp work�ow leads to very

similar results compared to the data provided by the authors (Figure 1B). The set of �ltered cells

and proteins are almost identical. The �nal processed data using the two work�ows shows high

similarity with most di�erences close to zero. A small proportion of the processed protein expres-

sion values show important di�erences between the two work�ows. Since this is not observed at the

peptide expression level, we suspect those large di�erence are the consequence of unstable data im-

putation and/or batch correction. A detailed report about the reproduction of the SCoPE2 analysis

using scp can be found on GitHub2(Vanderaa and Gatto, 2021). This report includes the code used

and some comprehensive documentation to give the reader a good understanding of the underlying

processes. It also gives additional comments on each steps of the SCoPE2 work�ow and suggest

alternatives steps and methods for future analyses.

1https://github.com/SlavovLab/SCoPE2
2https://uclouvain-cbio.github.io/SCP.replication/articles/SCoPE2.html
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Figure 1: Reproducing the SCoPE2 data processing. A: Overview of the key steps performed

in the SCoPE2 script. Blue boxes indicate steps that are already implemented in QFeatures. The

orange boxes indicate steps that were implemented in scp. The gray box indicates a step imple-

mented in another package. B: Results of the replication. The top row demonstrates the agreement

between cells, peptides or proteins between SCoPE2 and scp. The bottom row shows the numerical

di�erences between the peptide or protein expression matrices. Red arrows point towards the step

that generated the tested data.
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4 Conclusion

New tools are required for principled and standardized analysis of SCP data. In this work, we

show the successful application of scp, our R/Bioconductor software package, to reproduce the

data processing work�ow published in Specht et al. (2021). While replication or reproduction don't

guarantee optimal processing of the data and the results, it demonstrates coherence and increase

trust in the data and the results. In addition, the scp package allows for an open SCP environment

that can foster new methodological developments as well as spreading SCP data analysis towards a

broader computational community. We emphasized on the standardization of the implementation

which facilitates the integration with currently available tools such as the single-cell methods and

work�ows provided by the Bioconductor project (Amezquita et al. (2019)). Furthermore, the code

is continuously tested and improved to guarantee long term usability of the software.

Although the reproduction of the SCoPE2 results supports the reliability of the original work,

additional improvements are necessary. Complex challenges, such as batch e�ects and data missing-

ness, still need to be tackled and further methodological developments are required for a principled

and rigorous work�ow.

5 Expert opinion

5.1 Batch correction

The SCoPE2 protocol relies on sample multiplexing. The 1490 single cell samples were multiplexed

across 177 MS runs, 63 of which were labeled using TMT-11 and 114 using TMT-16. The data were

acquired across 4 chromatographic batches (LCA9, LCA10, LCB3 and LCB7). Unsurprisingly, batch

e�ects account for the main source of variation in the unprocessed peptide data, as indicated by a

principal component analysis (PCA) on Figure 2. The �rst component (12.4 % of total variance)

perfectly separates the TMT-11 from the TMT-16 batches and the second component (6 % of total

variance) further separates the four chromatographic batches. The next two components (7.3 %

of total variance) are driven by biological variations and separate macrophages from monocytes.

Because components in PCA are constrained to be orthogonal, this analysis indicates that technical

and biological variation are independent. This is a key assumption in order to separate the undesired

technical variability from the biological variability. Orthogonality between technical and biological

variation is a achieved by a careful design of experiment. As pointed out in the SCoPE2 protocol,

6

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.12.439408doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439408
http://creativecommons.org/licenses/by/4.0/


it is crucial to randomize cell types and biological samples across di�erent MS batches.

Since batch e�ects are technically unavoidable, they need to be accounted for computationally.

The SCoPE2 authors opted for removing the batch e�ect using ComBat, an empirical Bayes frame-

work (Johnson et al., 2007). As with any procedure, it is important to understand and apply the

requirements of the method. First, ComBat assumes a balanced design, i.e. it requires that di�er-

ences between batches be only the result of technical di�erences. This can be an issue when cell

types or cell states are unknown in advance, i.e. when the single-cell experiments are designed, such

as for the unsupervised discovery of cell populations. Second, ComBat cannot work with missing

data which requires the data to be imputed beforehand. As we will discuss later, imputation is a

sensitive step that can lead to substantial artifacts in the data, especially when the number of miss-

ing values is high, as is the case for single-cell proteomics data. Thirdly, ComBat cannot account

for the hierarchical structure of batch e�ects. We anticipate that once the technology matures, and

is applied to clinical samples, for instance across multiple patients and acquisitions, that such a

hierarchical structure will become signi�cant. Finally, ComBat creates a new data set by �tting

and removing the batch e�ect from the input data and ignores the uncertainty associated to the

estimation of the batch e�ect itself. It would be important to quantify this uncertainty instead of

considering point estimates. Other batch correction methods have been developed for scRNA-Seq

data and were extensive benchmarked elsewhere (Tran et al. (2020) and Chazarra-Gil et al. (2021)).

However, methods tailored for other single-cell application only partly address the above listed issues

and none suggest to propagate the uncertainty linked to batch e�ect estimation. An alternative ap-

proach would be to avoid batch correction altogether and account for batch e�ects explicitly during

data modeling (Ritchie et al., 2015; Goeminne et al., 2016; Risso et al., 2018).
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Figure 2: SCP data exhibit batch e�ects. The PCA is performed on the peptide data after log-

transformation (cf Figure 1A). The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm

(Andrecut (2009)) was used to account for missing values during PCA. The LC batches were acquired

either with a TMT-11 (green) or TMT-16 (yellow) protocol. The data set contains two types of

single-cells: macrophages (red) and monocytes (blue). A: PCA scores for the �rst four components.

Each point represents a single-cell is colored according to the corresponding cell type. The ellipses

give the 95 % interval for each chromatographic batch. B: Distribution of the principal components

scores. Each principal component is displayed in a separate column. The distributions are split

according to LC batch (top row) or to the sample type (bottom row). The density were computed

from the PCA scores.
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5.2 Data missingness

Next to batch e�ects, missing values are a major challenge in MS-based proteomics Lazar et al.

(2016). Missingness refers to the fact that not all features (peptides or proteins) are detected and

quanti�ed in all samples. We can distinguish between to types of missingness.

The �rst type is biological missingness. The peptides of a proteins are not detected in a sample

because that sample does not express the protein. Such missingness is biologically relevant and must

be considered accordingly. We observed this phenomenon in the SCoPE2 data, where some peptides

are systematically missing less in macrophages compared to monocytes and the reduced missingness

is correlated with an increased average expression level in that cell type (Figure 3).

The second type is technical missingness. There are several technical mechanisms that explain

why a protein could not be detected in a sample. A �rst reason is that none of its constituting

peptides could be correctly delivered to the MS instrument, for example due to sample loss. Sample

loss is a major concern for single-cell applications because only limited amounts of material are

available to start with. This limitation is actively being tackled and improved in the last two years,

the SCoPE2 protocol (Specht et al. (2021)) or the nanoPOTS chips (Zhu et al. (2018b)) are two

examples among others. Poor ionization of peptides can also lead to reduced signal or completely

missing data. Another cause of technical missingness is related to MS1 peak selection. In data

dependent acquisition (DDA), only the most abundant precursor peaks are selected for fragmentation

and MS2 acquisition. Whether a peak will be selected is therefore highly dependent on the abundance

of a peptide, the surrounding peptides in a given sample, and that peptides ionization e�ciency.

Several approaches have been developed to reduce this bias by propagating spectrum identi�cations

from one sample to MS1 peaks from another sample. The match between run algorithm of MaxQuant

(Tyanova et al. (2016)) is very popular in label-free SCP (Zhu et al. (2018a), Zhu et al. (2018b),

Zhu et al. (2019), Cong et al. (2020), Cong et al. (2021), Brunner et al. (2020)), but methodological

improvements have recently been suggested for both label-free (Kalxdorf et al. (2020)) and TMT-

based SCP (Yu et al. (2020)). Finally, another reason for missingness is the inability to match a

spectrum to a peptide sequence. This usually occurs when lowly abundant peptides generate low

quality spectra. Therefore, the more abundant a peptide is, the more likely it will get identi�ed. This

limitation is tackled by improving the current sensitivity of LC-MS/MS instruments. For instance,

Cong et al. (2020) reported an improved proteome coverage when decreasing the diameter of the

LC columns or upgrading the Orbitrap Eclipse Tribrid MS to an Orbitrap Fusion Lumos Tribrid

MS. Later, they also showed improved peptide identi�cation by coupling the MS with a high �eld
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asymmetric ion mobility spectrometry (FAIMS) device (Cong et al. (2021)). Technical missingness

translates to the fact that two similar MS runs will not contain the same set of quanti�ed proteins.

Although most proteins are common to several MS runs, each run exhibits a speci�c set of proteins

that were probably present but missed in the other runs (Figure 3). While upcoming technical

improvements to SCP will further decrease the amount of missing values, computational approaches

will still be required.

To overcome the current limitations regarding missing data, Specht and colleagues imputed

missing data using the k-nearest neighbors (KNN) method. They applied KNN in the sample space

instead of the gene space, thus increasing the similarity between di�erent samples. Since subsequent

cluster or di�erential abundant protein analyses focus on sample-wise di�erences, this causes an

underestimation of the variance and hence leads to a potential increased of false positive outcome.

Furthermore, the imputation is performed at the protein level. As pointed out by Lazar et al.

(2016), imputation at protein levels means that a �rst implicit imputation is performed at the peptide

level and the authors suggest to use instead well-justi�ed imputation methods. However, a good

understanding of the missingness mechanism is required to justify the use of a suited imputation

method. Further research is required to extend the work of Lazar et al. (2016) to the context of

SCP data. Finally, just like batch correction, imputation is an estimation process that generates

estimates with some degree of uncertainty. Replacing missing data by imputed values ignores the

variance associated to the estimates and this variance can become large when available data are

scarce. Multiple imputation, i.e. the application of a range of imputation parameters or methods

to estimate a range of plausible values rather than point estimates, would be a promising strategy

here. This is best illustrated by an issue we noticed in the data. For instance, the RNF41 protein is

quanti�ed in only three MS runs and KNN imputation predicted the missing values for the remaining

runs (Figure 4). When comparing the resulting data distribution for to the distribution for VIM,

a protein that is not missing, we can clearly observe that the imputation introduces two suspicious

trends. First, the variability observed for imputed values is much lower than for acquired values,

and second, the imputation does not exhibit batch e�ects. While reduced variability and absence of

batch e�ects are desirable properties, in this case, we are faced with erroneous data that does not

hold biologically meaningful information. The imputed data for RNF41 is unreliable and should be

�agged accordingly.
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Figure 3: Missing data is the consequence of two components. A. Biological missingness

is illustrated by plotting the proportion of missing values in monocytes against the proportion of

missing values in macrophages for each peptide. Those proportions are also shown on the histograms

along the y and x axis for monocyte and macrophage, respectively. Each peptide is colored according

the relative log fold change between macrophage over monocyte. The data used is the peptide data

after log-transformation (cf Figure 1 A). B. The technical missingness is shown using an upset plot

(Gehlenborg, 2019) on eight representative MS runs. Two MS runs were randomly sampled from

each of the four LC batches. The bar plot on the left shows the total number of proteins per MS

run and the bar plot at the top shows the number of proteins for each intersection. A black dot

indicates the corresponding MS runs that are included in the intersection.

11

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.12.439408doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439408
http://creativecommons.org/licenses/by/4.0/


-2

-1

0

Single-cells (order by acquisition date)

Lo
g2

 p
ro

te
in

 e
xp

re
ss

io
n

RNF41 (Q9H4P4)
Highly missing

-2

-1

0

1

2

Single-cells (order by acquisition date)

Lo
g2

 p
ro

te
in

 e
xp

re
ss

io
n

VIM (P08670)
Not missing

SampleType
Macrophage

Monocyte
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observed for VIM. Data points are colored in red for macrophages and in blue for monocyte.

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 12, 2021. ; https://doi.org/10.1101/2021.04.12.439408doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439408
http://creativecommons.org/licenses/by/4.0/


5.3 Batch e�ects and data missingness are not independent

As of today, all published SCP analyses consider batch e�ects and data missingness as two distinct

issues that can be tackled separately when they are, in reality correlated. Figure 5 highlights

the impact of acquiring data in di�erent LC batches on the data missingness. First, since with

SCoPE2, peptides are identi�ed from the carrier signal, the number of identi�ed peptides and their

missingness display a prominent MS acquisition e�ect. Second, the LC batches in�uence the amount

of missingness. For instance, more missing values are observed for the batch LCB3 than LCB7.

Third, the amount of missing data within each LC batch varies over time. LCA10 displays a very

clear increase of missingness, while LCB7 show a decrease is missing values. Finally, LC batches also

in�uences the variability of missing data as the proportion of missing values, with LCB3 displaying

much less thereof compared to all other ones. Therefore missing values can only be correctly modeled

if we include batch covariates. Inversely, batch e�ect can only be correctly modeled if we accurately

model the missing data instead of replacing by imputed values.

A solution to this issue is to explicitly model the protein expression and the protein detection rate.

The hurdle model suggested in Goeminne et al. (2020) is very compelling in this regard. The hurdle

model consist of two components. The �rst component is the MSqRob model (Goeminne et al.,

2016), that �ts peptide intensities as a function of sample covariates, and includes blocking factors

for batch e�ect, taking into account the correlation between peptides belonging to the same protein.

Inference on the estimates allow to perform di�erential abundance analysis. The second component

is a binary component that models the probability that an observation is missing as a function of

sample covariates for each run independently. This allows to perform di�erential detection analysis.

Further research is needed to assess the performance of the model when applied to SCP data in the

light of in�ation of missing values, and to further adapt the algorithm to achieve principled SCP

data analysis.

In conclusion, we believe there are two open paths of research that need to be explored to

deal with the batch e�ect and data missingness challenge. First, we need to better understand

the di�erent mechanisms that in�uence missingness and batch e�ects in SCP data and how they

di�er from bulk proteomics. Benchmark data sets are therefore required to assess our ability to

control for technical factors (e.g. operator, acquisition run, instrument, LC column, . . . ) while

preserving the variance induced by biological meaningful (e.g. cell type, cell state, treatment,...).

The second path to take is to develop dedicated analytical models and methods that can disentangle

the technical challenges that are batch e�ects and data missingness from the desired biological
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Figure 5: In�uence of batch on data missingness. The proportion of missing data is shown for

each single cell as a dot colored by LC batch. A. E�ect of the MS run. Cells are ordered based on

the acquisition date. The 95 % ellipses are drawn for every MS run. B. E�ect of LC batch. Cells are

grouped by LC batch. The missing data distribution within each batch is highlighted using violin

plots.
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knowledge. scp represents an ideal environment for a standardized processing of the data and hence

allowing comparison, integration and improvement of various existing methods available from other

�elds as well as benchmarking new methodological innovations.
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