External memory algorithms and data structures: dealing with massive data

Jeffrey Scott Vitter
2001 ACM Computing Surveys  
Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. In this article we survey the state of the art in the design and analysis of external memory (or EM) algorithms and data structures, where the goal is to exploit locality in order to reduce the I/O costs. We consider a variety
more » ... f EM paradigms for solving batched and online problems efficiently in external memory. For the batched problem of sorting and related problems such as permuting and fast Fourier transform, the key paradigms include distribution and merging. The paradigm of disk striping offers an elegant way to use multiple disks in parallel. For sorting, however,
doi:10.1145/384192.384193 fatcat:tunz4fa3rrgv7hwbk7qsvahd5i