Spatially-constrained probability distribution model of incoherent motion (SPIM) for abdominal diffusion-weighted MRI

Sila Kurugol, Moti Freiman, Onur Afacan, Jeannette M. Perez-Rossello, Michael J. Callahan, Simon K. Warfield
<span title="">2016</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="" style="color: black;">Medical Image Analysis</a> </i> &nbsp;
Quantitative diffusion-weighted MR imaging (DW-MRI) of the body enables characterization of the tissue microenvironment by measuring variations in the mobility of water molecules. The diffusion signal decay model parameters are increasingly used to evaluate various diseases of abdominal organs such as the liver and spleen. However, previous signal decay models (i.e., monoexponential, bi-exponential intra-voxel incoherent motion (IVIM) and stretched exponential models) only provide insight into
more &raquo; ... he average of the distribution of the signal decay rather than explicitly describe the entire range of diffusion scales. In this work, we propose a probability distribution model of incoherent motion that uses a mixture of Gamma distributions to fully characterize the multi-scale nature of diffusion within a voxel. Further, we improve the robustness of the distribution parameter estimates by integrating spatial homogeneity prior into the probability distribution model of incoherent motion (SPIM) and by using the fusion bootstrap solver (FBM) to estimate the model parameters. We evaluated the improvement in quantitative DW-MRI analysis achieved with the SPIM model in terms of accuracy, precision and reproducibility of parameter estimation in both simulated data and in 68 abdominal in-vivo DW-MRIs. Our results show that the SPIM model not only substantially reduced parameter estimation errors by up to 26%; it also significantly improved the robustness of the parameter estimates (paired Students t-test, p < 0.0001) by reducing the coefficient of variation (CV) of estimated parameters compared to those produced by previous models. In addition, the SPIM model improves the parameter estimates reproducibility for both intra-(up to 47%) and inter-session (up to 30%) estimates compared to those generated by previous models. Thus, the SPIM model has the potential to improve accuracy, precision and robustness of quantitative abdominal DW-MRI analysis for clinical applications. Graphical abstract 1
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1016/</a> <a target="_blank" rel="external noopener" href="">pmid:27111049</a> <a target="_blank" rel="external noopener" href="">pmcid:PMC4903917</a> <a target="_blank" rel="external noopener" href="">fatcat:lqklwg2z2vc4vgc4m2ix2b2rri</a> </span>
<a target="_blank" rel="noopener" href=";blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a> <a target="_blank" rel="external noopener" href="" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>