Changing shapes and implied viscosities of suspended submicron particles

Y. Zhang, M. S. Sanchez, C. Douet, Y. Wang, A. P. Bateman, Z. Gong, M. Kuwata, L. Renbaum-Wolff, B. B. Sato, P. F. Liu, A. K. Bertram, F. M. Geiger (+1 others)
2015 Atmospheric Chemistry and Physics Discussions  
The change in shape of atmospherically relevant organic particles is used to estimate the viscosity of the particle material without the need for removal from aerosol suspension. The dynamic shape factors χ of particles produced by α-pinene ozonolysis in a flow tube reactor, under conditions of particle coagulation, were measured while altering the relative humidity (RH) downstream of the flow tube. As relative humidity was increased, the results showed that χ could change from 1.27 to 1.02,
more » ... responding to a transition from aspherical to nearly spherical shapes. The shape change could occur at elevated RH because the organic material had decreased viscosity and was therefore able to flow to form spherical shapes, as favored by minimization of surface area. Numerical modeling was used to estimate the particle viscosity associated with this flow. Based on particle diameter and RH exposure time, the viscosity dropped from 10<sup>(8.7±2.0)</sup> to 10<sup>(7.0±2.0)</sup> Pa s (2&sigma;) for an increase in RH from < 5 to 58% at 293 K, corresponding to a solid to semisolid transition for the organic material. These results imply that the equilibration of the chemical composition of the particle phase with the gas phase can shift from hours at mid-range RH to weeks for low RH.
doi:10.5194/acpd-15-6821-2015 fatcat:gkfkogs5knc7zagvtzunrm2bfa