A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Efficient Greedy Algorithms for Influence Maximization in Social Networks
2014
Journal of Information Processing Systems
Influence maximization is an important problem of finding a small subset of nodes in a social network, such that by targeting this set, one will maximize the expected spread of influence in the network. To improve the efficiency of algorithm KK_Greedy proposed by Kempe et al., we propose two improved algorithms, Lv_NewGreedy and Lv_CELF. By combining all of advantages of these two algorithms, we propose a mixed algorithm Lv_MixedGreedy. We conducted experiments on two synthetically datasets and
doi:10.3745/jips.04.0003
fatcat:vg3rpkxgnjdcrbccd7jmsenfly