Self-Approaching Graphs [article]

Soroush Alamdari, Timothy M. Chan, Elyot Grant, Anna Lubiw, Vinayak Pathak
2013 arXiv   pre-print
In this paper we introduce self-approaching graph drawings. A straight-line drawing of a graph is self-approaching if, for any origin vertex s and any destination vertex t, there is an st-path in the graph such that, for any point q on the path, as a point p moves continuously along the path from the origin to q, the Euclidean distance from p to q is always decreasing. This is a more stringent condition than a greedy drawing (where only the distance between vertices on the path and the
more » ... on vertex must decrease), and guarantees that the drawing is a 5.33-spanner. We study three topics: (1) recognizing self-approaching drawings; (2) constructing self-approaching drawings of a given graph; (3) constructing a self-approaching Steiner network connecting a given set of points. We show that: (1) there are efficient algorithms to test if a polygonal path is self-approaching in R^2 and R^3, but it is NP-hard to test if a given graph drawing in R^3 has a self-approaching uv-path; (2) we can characterize the trees that have self-approaching drawings; (3) for any given set of terminal points in the plane, we can find a linear sized network that has a self-approaching path between any ordered pair of terminals.
arXiv:1306.5460v1 fatcat:asenvb4zendero6fuz2shkqfx4