Supplementary material to "An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils" [post]

Wei Zhang, Zhisheng Yao, Siqi Li, Xunhua Zheng, Han Zhang, Lei Ma, Kai Wang, Rui Wang, Chunyan Liu, Shenghui Han, Jia Deng, Yong Li
2021 unpublished
Prediction ammonia volatilization after field application of swine slurry: DNDC model development, Agric. Ecosyst. Environ. 219, 179−189. Dubache, G., Li, S., Zheng, X., Zhang, W., Deng, J., 2019. Modeling ammonia volatilization following urea application to winter cereal fields in the United Kingdom by improving a biogeochemical model, Sci. Total Environ. 660, 1403-1418. Jiang, Z., 2010. Analysis on the establishment conditions of the square sum decomposition formular of regression model, J.
more » ... ression model, J. Industr. Techn. Econ. 29(4), 116−119 (in Chinese). Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R., Veith, T., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulation, T. Am. Soc. Agr. Biol. Eng. 50, 885−900. Nash, J., Sutcliffe, J., 1970. River flow forecasting through conceptual models: part I-a discussion of principles, J. Hydrol. 10, 282-290. Willmott, C., Matsuurra, K., 2005. Advantages of the mean aboslute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Clim. Res. 30, 79−82.
doi:10.5194/bg-2020-433-supplement fatcat:hxjm3ly7c5bjtp6mevlnnv46lm