Counterexample-Driven Genetic Programming: Heuristic Program Synthesis from Formal Specifications

Iwo Błądek, Krzysztof Krawiec, Jerry Swan
2018 Evolutionary Computation  
Conventional genetic programming (GP) can guarantee only that synthesized programs pass tests given by the provided input-output examples. The alternative to such a test-based approach is synthesizing programs by formal specification, typically realized with exact, nonheuristic algorithms. In this article, we build on our earlier study on Counterexample-Based Genetic Programming (CDGP), an evolutionary heuristic that synthesizes programs from formal specifications. The candidate programs in
more » ... undergo formal verification with a Satisfiability Modulo Theory (SMT) solver, which results in counterexamples that are subsequently turned into tests and used to calculate fitness. The original CDGP is extended here with a fitness threshold parameter that decides which programs should be verified, a more rigorous mechanism for turning counterexamples into tests, and other conceptual and technical improvements. We apply it to 24 benchmarks representing two domains: the linear integer arithmetic (LIA) and the string manipulation (SLIA) problems, showing that CDGP can reliably synthesize provably correct programs in both domains. We also confront it with two state-of-the art exact program synthesis methods and demonstrate that CDGP effectively trades longer synthesis time for smaller program size.
doi:10.1162/evco_a_00228 pmid:29786460 fatcat:2gjdy7gcxjgqfh5ayk7w4qf4ym