Improving Symbolic System-Level Synthesis by Solver Coordination and Domain-Specific Heuristics

Christian Haubelt, Alexander Rausch
2022 Electronics  
Deciding binding, routing, and scheduling within system synthesis for hard real-time systems can be a challenging task. Symbolic methods leveraging results from the area of satisfiability modulo theories (SMT) solving have shown to be scalable methods for this by splitting the work between a logic solver for routing and binding, and a background theory solver performing schedulability analysis. For these methods, in order to prune the search space of infeasible implementations efficiently, a
more » ... dback by the background theory is required. It can be observed that previous approaches might fail here as feedback cannot be derived within a reasonable amount of time. We propose a coordinated synthesis approach that overcomes this issue. Here, we leverage an answer set solver as logic solver that is enhanced with a scheduling-aware binding and routing refinement. Based on the answer set solver's decisions for binding and routing, a background theory solver then computes time-triggered schedules to resolve resource access conflicts. If no feasible schedule exists, a feedback to the answer set solver can be derived within reasonable time. Our experiments synthesizing massively parallel hardware architectures show that our approach increases the applicability of symbolic synthesis considerably. While more than half of the investigated instances in our experiments cannot be solved in the non-coordinated approach already at small 2-dimensional 3×3 tiled mesh hardware architectures with 60% average computational utilization per tile, the coordinated synthesis approach scales up to 5< [...]
doi:10.3390/electronics11121888 doaj:31d27f8d6a774a1fb08d76845d5f06f6 fatcat:mk5mttzyzvgszjbwr4ulewe6ve