Sample weighting as an explanation for mode collapse in generative adversarial networks [article]

Aksel Wilhelm Wold Eide, Eilif Solberg, Ingebjørg Kåsen
2020 arXiv   pre-print
Generative adversarial networks were introduced with a logistic MiniMax cost formulation, which normally fails to train due to saturation, and a Non-Saturating reformulation. While addressing the saturation problem, NS-GAN also inverts the generator's sample weighting, implicitly shifting emphasis from higher-scoring to lower-scoring samples when updating parameters. We present both theory and empirical results suggesting that this makes NS-GAN prone to mode dropping. We design MM-nsat, which
more » ... eserves MM-GAN sample weighting while avoiding saturation by rescaling the MM-GAN minibatch gradient such that its magnitude approximates NS-GAN's gradient magnitude. MM-nsat has qualitatively different training dynamics, and on MNIST and CIFAR-10 it is stronger in terms of mode coverage, stability and FID. While the empirical results for MM-nsat are promising and favorable also in comparison with the LS-GAN and Hinge-GAN formulations, our main contribution is to show how and why NS-GAN's sample weighting causes mode dropping and training collapse.
arXiv:2010.02035v1 fatcat:yfbyz77bozg2pg22demd6oh53q