Predicting Solar Flares Using a Novel Deep Convolutional Neural Network

Xuebao Li, Yanfang Zheng, Xinshuo Wang, Lulu Wang
2020 Astrophysical Journal  
Space weather forecasting is very important, and the prediction of space weather, especially for solar flares, has increasingly attracted research interests with the numerous recent breakthroughs in machine learning. In this study, we propose a novel convolutional neural network (CNN) model to make binary class prediction for both C-class and M-class flares within 24 hr. We collect magnetogram samples of solar active regions (ARs) provided by the Space-weather Helioseismic and Magnetic Imager
more » ... tive Region Patches (SHARP) data from 2010 May to 2018 September. These samples are used to construct 10 separate data sets. Then, after training, validating, and testing our model, we compare the results of our model with previous studies in several metrics, with a focus on the true skill statistic (TSS). The major results are summarized as follows. (1) We propose a method of shuffle and split cross-validation (CV) based on AR segregation, which is the first attempt to verify the validity and stability of the model in flare prediction. (2) The proposed CNN model achieves a relatively high score of TSS=0.749±0.079 for M-class prediction, and TSS=0.679±0.045 for C-class prediction, which is greatly improved compared with previous studies. (3) The model trained on 10 CV data sets is considerably robust and stable in making flare prediction for both C class and M class. Our experimental results indicate that our proposed CNN model is a highly effective method for flare forecasting, with quite excellent prediction performance.
doi:10.3847/1538-4357/ab6d04 fatcat:tiuq253q6nf4zkh3b7jxf26tb4