Interpolation Cryptanalysis of Unbalanced Feistel Networks with Low Degree Round Functions [article]

Arnab Roy, Elena Andreeva, Jan Ferdinand Sauer
2021 IACR Cryptology ePrint Archive  
In recent years a new type of block ciphers and hash functions over a (large) field, such as MiMC and GMiMC, have been designed. Their security, particularly over a prime field, is mainly determined by algebraic cryptanalysis techniques, such as Gröbner basis and interpolation attacks. In SAC 2019, Li and Preneel presented low memory interpolation attack against the MiMC and Feistel-MiMC designs. In this work we answer the open question posed in their work and show that low memory interpolation
more » ... attacks can be extended to unbalanced Feistel networks (UFN) with low degree functions, and in particular to the GMiMC design. Our attack applies to UFNs with expanding and contracting round functions keyed either via identical (univariate) or distinct round keys (multivariate). Since interpolation attacks do not necessarily yield the best possible attacks over a binary extension field, we focus our analysis on prime fields Fp. Our next contribution is to develop an improved technique for a more efficient key recovery against UFNs with expanding round function. We show that the final key recovery step can be reduced not only to the gcd but also to the root finding problem. Despite its higher theoretical complexity, we show that our approach has a particularly interesting application on Sponge hash functions based on UFNs, such as GMiMCHash. We illustrate for the first time how our root finding technique can be used to find collision, second preimage and preimage attacks on (reduced round) members of the GMiMCHash family. In addition, we support our theoretical analysis with small-scale experimental results. 4
dblp:journals/iacr/00050S21 fatcat:z6u5olg5qnao3bistluxek377u