Deep Learning for SAR Ship Detection: Past, Present and Future

Jianwei Li, Congan Xu, Hang Su, Long Gao, Taoyang Wang
2022 Remote Sensing  
After the revival of deep learning in computer vision in 2012, SAR ship detection comes into the deep learning era too. The deep learning-based computer vision algorithms can work in an end-to-end pipeline, without the need of designing features manually, and they have amazing performance. As a result, it is also used to detect ships in SAR images. The beginning of this direction is the paper we published in 2017BIGSARDATA, in which the first dataset SSDD was used and shared with peers. Since
more » ... en, lots of researchers focus their attention on this field. In this paper, we analyze the past, present, and future of the deep learning-based ship detection algorithms in SAR images. In the past section, we analyze the difference between traditional CFAR (constant false alarm rate) based and deep learning-based detectors through theory and experiment. The traditional method is unsupervised while the deep learning is strongly supervised, and their performance varies several times. In the present part, we analyze the 177 published papers about SAR ship detection. We highlight the dataset, algorithm, performance, deep learning framework, country, timeline, etc. After that, we introduce the use of single-stage, two-stage, anchor-free, train from scratch, oriented bounding box, multi-scale, and real-time detectors in detail in the 177 papers. The advantages and disadvantages of speed and accuracy are also analyzed. In the future part, we list the problem and direction of this field. We can find that, in the past five years, the AP50 has boosted from 78.8% in 2017 to 97.8 % in 2022 on SSDD. Additionally, we think that researchers should design algorithms according to the specific characteristics of SAR images. What we should do next is to bridge the gap between SAR ship detection and computer vision by merging the small datasets into a large one and formulating corresponding standards and benchmarks. We expect that this survey of 177 papers can make people better understand these algorithms and stimulate more research in this field.
doi:10.3390/rs14112712 fatcat:dbd6a4ugwjc65pook3wpcuj52a