Multidimensional Gaussian sums arising from the distribution of Birkhoff sums in zero entropy dynamical systems

M Bernardo, M Courbage, T T Truong
2004 Journal of Physics A: Mathematical and General  
A duality formula, of the Hardy and Littlewood type for multidimensional Gaussian sums, is proved in order to estimate the asymptotic long time behavior of distribution of Birkhoff sums $S_n$ of a sequence generated by a skew product dynamical system on the $\mathbb{T}^2$ torus, with zero Lyapounov exponents. The sequence, taking the values $\pm 1$, is pairwise independent (but not independent) ergodic sequence with infinite range dependence. The model corresponds to the motion of a particle on
more » ... on of a particle on an infinite cylinder, hopping backward and forward along its axis, with a transversal acceleration parameter $\alpha$. We show that when the parameter $\alpha /\pi$ is rational then all the moments of the normalized sums $E((S_n/\sqrt{n})^k)$, but the second, are unbounded with respect to n, while for irrational $\alpha /\pi$, with bounded continuous fraction representation, all these moments are finite and bounded with respect to n.
doi:10.1088/0305-4470/37/49/003 fatcat:zrtniusizfdcvaqhwoaq7kdb4a