Improvement of therapeutic capacity of insulin-producing cells trans-differentiated from human liver cells using engineered cell sheet [post]

Yu Na Lee, Hye-Jin Yi, Eun Hye Seo, Jooyun Oh, Song Lee, Sarah Ferber, Teruo Okano, Inkyong Shim, Song Cheol Kim
2020 unpublished
Background: Although pancreatic islet transplantation therapy is ideal for diabetes patients, several hurdles have prevented it from becoming a standard treatment, including donor shortage and low engraftment efficacy. In this study, we prepared insulin-producing cells trans-differentiated from adult human liver cells as a new islet source. Also, cell sheets formation could improve differentiation efficiency and graft survival.Methods: Liver cells were expanded in vitro and trans-differentiated
more » ... to IPCs using adenovirus vectors carrying human genes for PDX1, NEUROD1 and MAFA. IPCs were seeded on temperature-responsive culture dishes to form cell sheets. Differentiation efficiency were confirmed by ß cell-specific gene expression, insulin production, and immunohistochemistry. IPCs suspension was injected by portal vein (PV), and IPCs sheet was transplanted on the liver surface of the diabetic nude mouse. The therapeutic effect of IPC sheet was evaluated by comparing blood glucose control, weight gain, histological evaluation and hepatotoxicity with IPCs injection group. Also, cell biodistribution was assessed by in vivo/ex vivo fluorescence image tagging.Results: Insulin gene expression and protein production were significantly increased on IPC sheets compared with those in IPCs cultured on conventional culture dishes. Transplanted IPC sheets displayed significantly higher engraftment efficiency and fewer transplanted cells in other organs than injected IPCs, and also lower liver toxicity, improved blood glucose levels, and weight gain. Immunohistochemical analyses of liver tissue revealed positive staining for PDX1 and insulin at 1, 2 and 4 weeks after IPCs transplantation.Conclusions: In conclusion, cell sheet formation enhanced the differentiation function and maturation of IPCs in vitro. Additionally, parameters for clinical application such as distribution, therapeutic efficacy, and toxicity were favorable. The cell sheet technique may be used with IPCs derived from various cell sources in clinical applications.
doi:10.21203/rs.3.rs-18445/v2 fatcat:bk6hlu3czvholg6macwnqjz37a