Highly Rearranged Mitochondrial Genome in Falcolipeurus lice (Phthiraptera: Philopteridae) from Endangered Eagles [post]

Yu Nie, Yi-Tian Fu, Yu Zhang, Yuan-Ping Deng, Ya Tu, Guo-Hua Liu
2021 unpublished
Background: Fragmented mitochondrial (mt) genomes and extensive mt gene rearrangements have been frequently reported from parasitic lice (Insecta: Phthiraptera). However, relatively little is available about the mt genomes from the family Philopteridae that is the most species-rich family within the suborder Ischnocera. Methods: Herein, we use next-generation sequencing to decode the mt genome sequences of Falcolipeurus suturalis and compared it with the mt genome sequences of F.
more » ... s. Phylogenetic relationship of the concatenated amino acid sequence data for 13 protein-coding genes of the two Falcolipeurus lice and selected members of the family Philopteridae was evaluated using Bayesian inference (BI).Results: The complete mt genome of F. suturalis is a circular double-stranded DNA molecule of 16,659 bp, and contains 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, as well as three putative non-coding regions. The gene order in F. suturalis mt genome was rearranged compared with that of F. quadripustulatus, and they were radical different from other louse species and the ancestral insect. Phylogenetic analyses revealed that the clear genetic distinctiveness between F. suturalis and F. quadripustulatus (Bayesian posterior probabilities=1.0), and the genus Falcolipeurus is more closely related to the genus Ibidoecus than to other genera (Bayesian posterior probabilities=1.0). Conclusions: These novel datasets will help to better understand the gene rearrangements and phylogenetic position of Falcolipeurus and provide useful genetic markers for systematics and phylogenetic studies of bird lice.
doi:10.21203/rs.3.rs-249932/v1 fatcat:524mfgjqendvpb2mbfzydohywe