A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Feasibility Analysis and Implementation of Adaptive Dynamic Reconfiguration of CNN Accelerators
2022
Electronics
In multi-tasking scenarios with dynamically changing loads, the parallel computing of convolutional neural networks (CNNs) causes high energy and resource consumption in the system. Another critical problem is that previous neural network hardware accelerators are often limited to fixed scenarios and lack the function of adaptive adjustment. To solve these problems, a reconfiguration adaptive system based on the prediction of algorithm workload is proposed in this paper. Deep Learning Processor
doi:10.3390/electronics11223805
fatcat:tf4yto722rc2lii33muxeumhsu