Feature Selection for Text and Image Data Using Differential Evolution with SVM and Naïve Bayes Classifiers

Abhishek Dixit, Ashish Mani, Rohit Bansal
2020 Engineering Journal  
Classification problems are increasing in various important applications such as text categorization, images, medical imaging diagnosis and bimolecular analysis etc. due to large amount of attribute set. Feature extraction methods in case of large dataset play an important role to reduce the irrelevant feature and thereby increases the performance of classifier algorithm. There exist various methods based on machine learning for text and image classification. These approaches are utilized for
more » ... mensionality reduction which aims to filter less informative and outlier data. Therefore, these approaches provide compact representation and computationally better tractable accuracy. At the same time, these methods can be challenging if the search space is doubled multiple time. To optimize such challenges, a hybrid approach is suggested in this paper. The proposed approach uses differential evolution (DE) for feature selection with naïve bayes (NB) and support vector machine (SVM) classifiers to enhance the performance of selected classifier. The results are verified using text and image data which reflects improved accuracy compared with other conventional techniques. A 25 benchmark datasets (UCI) from different domains are considered to test the proposed algorithms. A comparative study between proposed hybrid classification algorithms are presented in this work. Finally, the experimental result shows that the differential evolution with NB classifier outperforms and produces better estimation of probability terms. The proposed technique in terms of computational time is also feasible.
doi:10.4186/ej.2020.24.5.161 fatcat:k5zjg45xubatnpyzfhv46lsi7i