Price-aware Recommendation with Graph Convolutional Networks [article]

Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin
2020 arXiv   pre-print
In recent years, much research effort on recommendation has been devoted to mining user behaviors, i.e., collaborative filtering, along with the general information which describes users or items, e.g., textual attributes, categorical demographics, product images, and so on. Price, an important factor in marketing --- which determines whether a user will make the final purchase decision on an item --- surprisingly, has received relatively little scrutiny. In this work, we aim at developing an
more » ... fective method to predict user purchase intention with the focus on the price factor in recommender systems. The main difficulties are two-fold: 1) the preference and sensitivity of a user on item price are unknown, which are only implicitly reflected in the items that the user has purchased, and 2) how the item price affects a user's intention depends largely on the product category, that is, the perception and affordability of a user on item price could vary significantly across categories. Towards the first difficulty, we propose to model the transitive relationship between user-to-item and item-to-price, taking the inspiration from the recently developed Graph Convolution Networks (GCN). The key idea is to propagate the influence of price on users with items as the bridge, so as to make the learned user representations be price-aware. For the second difficulty, we further integrate item categories into the propagation progress and model the possible pairwise interactions for predicting user-item interactions. We conduct extensive experiments on two real-world datasets, demonstrating the effectiveness of our GCN-based method in learning the price-aware preference of users. Further analysis reveals that modeling the price awareness is particularly useful for predicting user preference on items of unexplored categories.
arXiv:2003.03975v1 fatcat:s67v6cqifjbnzpzqznm6nhdgoe