A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Hierarchical Object Representation for Open-Ended Object Category Learning and Recognition
2016
Neural Information Processing Systems
Most robots lack the ability to learn new objects from past experiences. To migrate a robot to a new environment one must often completely re-generate the knowledgebase that it is running with. Since in open-ended domains the set of categories to be learned is not predefined, it is not feasible to assume that one can pre-program all object categories required by robots. Therefore, autonomous robots must have the ability to continuously execute learning and recognition in a concurrent and
dblp:conf/nips/KasaeiTL16
fatcat:g3nse3swercm3kupiysa3qdu54