Directly Optimize Diversity Evaluation Measures

Jun Xu, Long Xia, Yanyan Lan, Jiafeng Guo, Xueqi Cheng
2017 ACM Transactions on Intelligent Systems and Technology  
The queries issued to search engines are often ambiguous or multifaceted, which requires search engines to return diverse results that can fulfill as many different information needs as possible; this is called search result diversification. Recently, the relational learning to rank model, which designs a learnable ranking function following the criterion of maximal marginal relevance, has shown effectiveness in search result diversification [Zhu et al. 2014]. The goodness of a diverse ranking
more » ... odel is usually evaluated with diversity evaluation measures such as α-NDCG [Clarke et al. 2008], ERR-IA [Chapelle et al. 2009], and D#-NDCG [Sakai and Song 2011]. Ideally the learning algorithm would train a ranking model that could directly optimize the diversity evaluation measures with respect to the training data. Existing relational learning to rank algorithms, however, only train the ranking models by optimizing loss functions that loosely relate to the evaluation measures. To deal with the problem, we propose a general framework for learning relational ranking models via directly optimizing any diversity evaluation measure. In learning, the loss function upper-bounding the basic loss function defined on a diverse ranking measure is minimized. We can derive new diverse ranking algorithms under the framework, and several diverse ranking algorithms are created based on different upper bounds over the basic loss function. We conducted comparisons between the proposed algorithms with conventional diverse ranking methods using the TREC benchmark datasets. Experimental results show that the algorithms derived under the diverse learning to rank framework always significantly outperform the state-of-the-art baselines. . 2017. Directly optimize diversity evaluation measures: A new approach to search result diversification.
doi:10.1145/2983921 fatcat:52t3wyl7dvaifl2ycax6pzqsti