Membrane targeting activates Leucine-rich repeat kinase 2 with differential effects on downstream Rab activation [article]

Jillian H Kluss, Alexandra Beilina, Patrick A Lewis, Mark R Cookson, Luis Bonet-Ponce
2020 bioRxiv   pre-print
Genetic variation at the Leucine-rich repeat kinase 2 (LRRK2) locus contributes to risk of familial and sporadic Parkinson disease. Recent data have shown a robust association between localization to various membranes of the endolysosomal system and LRRK2 activation. However, the mechanism(s) underlying LRRK2 activation at endolysosomal membranes are still poorly understood. Here we artificially direct LRRK2 to six different membranes within the endolysosomal system. We demonstrate that LRRK2
more » ... strate that LRRK2 is activated and able to phosphorylate three of its Rab substrates (Rab10, Rab12 and Rab29) at each compartment. However, we report differing localization of pRab10 and pRab12 at the lysosomal and Golgi membranes. Specifically, we found that pRab10 colocalizes with a sub-population of perinuclear LRRK2-positive Golgi/lysosomal compartments whereas pRab12 localized to all LRRK2-positive Golgi/lysosomal membranes across the cell. When organelle positioning is manipulated by sequestering lysosomes to the perinuclear area, pRab10 colocalization with LRRK2 significantly increases. We also show recruitment of JIP4, a pRab10 effector that we have recently linked to LYTL, after trapping LRRK2 at various membranes. Taken together, we demonstrate that the association of LRRK2 to membranous compartments is sufficient for its activation and Rab phosphorylation independent of membrane identity. Our system also identifies a potential mechanism underlying the distinct relationships between LRRK2 and its substrates Rab10 and Rab12.
doi:10.1101/2020.12.01.406223 fatcat:otlolpxeqbaxxcsoe4tv3ckqvq