Modelo matemático 1D da dinâmica de um glioma com coeficiente de difusão descontínuo e capacidade de carga variável

Gabriel Carlos Pena da Silva, Jorge Andrés Julca Avila
2020 REMAT  
Neste trabalho, resolveremos numericamente a equação que modela o problema da dinâmica do crescimento de um glioma, com capacidade de carga que varia espacialmente. Devido à natureza difusiva do glioma, o problema é modelado pela Equação de Difusão-Reação (ED-R). Estudaremos o caso unidimensional (1D). A ED-R apresenta um perfil Gaussiano como condição inicial e condição de contorno do tipo Neumman. O microambiente tumoral é uma porção do cérebro, constituída, principalmente, por células do
more » ... ma. Ele apresenta três regiões: duas regiões de substâncias cinzentas, localizadas na parte extrema do microambiente, e uma região de substância branca, localizada no meio do microambiente. Dois fatos importantes caracterizam a modelagem desse problema. Primeiro, o coeficiente de difusão é uma função descontínua, e segundo, a capacidade de carga, no modelo de crescimento logístico, é uma função de tipo Hill que depende da variável espacial. O problema é resolvido numericamente pelo método de Crank-Nicolson, e os resultados numéricos apontam diminuição do crescimento tumoral ao considerar-se a capacidade de carga variável.
doi:10.35819/remat2020v6i2id4067 fatcat:xy5txwrqkfgs5hhyjhojpfdtre