Atmospheric band fitting coefficients derived from a self-consistent rocket-borne experiment

Mykhaylo Grygalashvyly, Martin Eberhart, Jonas Hedin, Boris Strelnikov, Franz-Josef Lübken, Markus Rapp, Stefan Löhle, Stefanos Fasoulas, Mikhail Khaplanov, Jörg Gumbel, Ekaterina Vorobeva
2019 Atmospheric Chemistry and Physics  
<p><strong>Abstract.</strong> Based on self-consistent rocket-borne measurements of temperature, the densities of atomic oxygen and neutral air, and the volume emission of the atmospheric band (762<span class="thinspace"></span>nm), we examined the one-step and two-step excitation mechanism of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mn
more » ... athvariant="normal">2</mn></msub></mrow><mfenced close=")" open="("><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>+</mo></msubsup></mrow></mfenced></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="54pt" height="22pt" class="svg-formula" dspmath="mathimg" md5hash="8501444005187b3419b2cfeb981bdaf0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1207-2019-ie00001.svg" width="54pt" height="22pt" src="acp-19-1207-2019-ie00001.png"/></svg:svg></span></span> for nighttime conditions. Following McDade et al. (1986), we derived the empirical fitting coefficients, which parameterize the atmospheric band emission <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M2" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub></mrow><mfenced close=")" open="("><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>+</mo></msubsup><mo>-</mo><msup><mi>X</mi><mn mathvariant="normal">3</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>-</mo></msubsup></mrow></mfenced><mfenced close=")" open="("><mrow><mn mathvariant="normal">0</mn><mo>,</mo><mn mathvariant="normal">0</mn></mrow></mfenced></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="117pt" height="22pt" class="svg-formula" dspmath="mathimg" md5hash="02f40fbcac4d1696b0544259b8712360"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1207-2019-ie00002.svg" width="117pt" height="22pt" src="acp-19-1207-2019-ie00002.png"/></svg:svg></span></span>. This allows us to derive the atomic oxygen concentration from nighttime observations of atmospheric band emission <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub></mrow><mfenced close=")" open="("><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>+</mo></msubsup><mo>-</mo><msup><mi>X</mi><mn mathvariant="normal">3</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>-</mo></msubsup></mrow></mfenced><mfenced close=")" open="("><mrow><mn mathvariant="normal">0</mn><mo>,</mo><mspace width="0.125em" linebreak="nobreak"/><mn mathvariant="normal">0</mn></mrow></mfenced></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="118pt" height="22pt" class="svg-formula" dspmath="mathimg" md5hash="1bba52d5e65e55fd0c192313ca591cdb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1207-2019-ie00003.svg" width="118pt" height="22pt" src="acp-19-1207-2019-ie00003.png"/></svg:svg></span></span>. The derived empirical parameters can also be utilized for atmospheric band modeling. Additionally, we derived the fit function and corresponding coefficients for the combined (one- and two-step) mechanism. The simultaneous common volume measurements of all the parameters involved in the theoretical calculation of the observed <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">2</mn></msub></mrow><mfenced close=")" open="("><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>+</mo></msubsup><mo>-</mo><msup><mi>X</mi><mn mathvariant="normal">3</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi>g</mi><mo>-</mo></msubsup></mrow></mfenced><mfenced close=")" open="("><mrow><mn mathvariant="normal">0</mn><mo>,</mo><mspace width="0.125em" linebreak="nobreak"/><mn mathvariant="normal">0</mn></mrow></mfenced></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="118pt" height="22pt" class="svg-formula" dspmath="mathimg" md5hash="bfd2ab4f84219a19d95d236846513063"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-1207-2019-ie00004.svg" width="118pt" height="22pt" src="acp-19-1207-2019-ie00004.png"/></svg:svg></span></span> emission, i.e., temperature and density of the background air, atomic oxygen density, and volume emission rate, is the novelty and the advantage of this work.</p>
doi:10.5194/acp-19-1207-2019 fatcat:loqyp6xrfveurax3gkpobpyiay