A new hybrid geometrical optics and radiance based scattering model for ray tracing applications

K.H. Ng, E.K. Tameh, A.R. Nix
IEEE International Conference on Communications, 2005. ICC 2005. 2005  
General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms.html Take down policy Explore Bristol Research is a digital archive and the intention is that deposited content should not be removed. However, if you believe that this version of the work breaches copyright law please contact open-access@bristol.ac.uk and include the
more » ... following information in your message: • Your contact details • Bibliographic details for the item, including a URL • An outline of the nature of the complaint On receipt of your message the Open Access Team will immediately investigate your claim, make an initial judgement of the validity of the claim and, where appropriate, withdraw the item in question from public view. Abstract-This paper presents a new hybrid geometrical optics (GO) and radiance based rough surface scattering model for use in ray tracing propagation models. The reflectance model includes the effects of both specular and diffuse reflection. The specular component is modelled using GO Fresnel reflections, while the diffuse components are modelled using radiance reflectance. The hybrid scattering model is then developed and implemented within an existing three-dimensional microcellular ray tracing model. Comparisons of predicted path loss and rms delay spread are made at 1.92 GHz using site specific measurements in an urban environment. The results demonstrate that scattering can be an important mechanism at this frequency. Significant improvements in prediction accuracy are demonstrated with the new hybrid scattering model.
doi:10.1109/icc.2005.1494721 dblp:conf/icc/NgTN05 fatcat:ml2fnoqsjzgp7lnn6v3yw3yju4