A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit <a rel="external noopener" href="https://arxiv.org/pdf/1711.05308v1.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
The (2,2) and (4,3) properties in families of fat sets in the plane
[article]
<span title="2017-11-14">2017</span>
<i >
arXiv
</i>
<span class="release-stage" >pre-print</span>
A family of sets satisfies the (p,q) property if among every p members of it some q intersect. Given a number 0<r< 1, a set S⊂R^2 is called r-fat if there exists a point c∈ S such that B(c,r) ⊆ S⊆ B(c,1), where B(c,r)⊂R^2 is a disk of radius r with center-point c. We prove constant upper bounds C=C(r) on the piercing numbers in families of r-fat sets in R^2 that satisfy the (2,2) or the (4,3) properties. This extends results by Danzer and Karasev on the piercing numbers in intersecting families
<span class="external-identifiers">
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1711.05308v1">arXiv:1711.05308v1</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ct35wytvyregjg6j3qul42pb7u">fatcat:ct35wytvyregjg6j3qul42pb7u</a>
</span>
more »
... of disks in the plane, as well as a result by Kynčl and Tancer on the piercing numbers in families of units disks in the plane satisfying the (4,3) property.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191020000029/https://arxiv.org/pdf/1711.05308v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/30/ec/30ec0ac92dc2a3b3db555ad9b1aeec9129ef1099.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1711.05308v1" title="arxiv.org access">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
arxiv.org
</button>
</a>