Adversarial Learning for Personalized Tag Recommendation [article]

Erik Quintanilla, Yogesh Rawat, Andrey Sakryukin, Mubarak Shah, Mohan Kankanhalli
2020 arXiv   pre-print
We have recently seen great progress in image classification due to the success of deep convolutional neural networks and the availability of large-scale datasets. Most of the existing work focuses on single-label image classification. However, there are usually multiple tags associated with an image. The existing works on multi-label classification are mainly based on lab curated labels. Humans assign tags to their images differently, which is mainly based on their interests and personal
more » ... g behavior. In this paper, we address the problem of personalized tag recommendation and propose an end-to-end deep network which can be trained on large-scale datasets. The user-preference is learned within the network in an unsupervised way where the network performs joint optimization for user-preference and visual encoding. A joint training of user-preference and visual encoding allows the network to efficiently integrate the visual preference with tagging behavior for a better user recommendation. In addition, we propose the use of adversarial learning, which enforces the network to predict tags resembling user-generated tags. We demonstrate the effectiveness of the proposed model on two different large-scale and publicly available datasets, YFCC100M and NUS-WIDE. The proposed method achieves significantly better performance on both the datasets when compared to the baselines and other state-of-the-art methods. The code is publicly available at https://github.com/vyzuer/ALTReco.
arXiv:2004.00698v1 fatcat:on4mybzeyfdc3gvnndedz4hpma