Exploiting WiFi Channel State Information for Residential Healthcare Informatics [article]

Bo Tan, Qingchao Chen, Kevin Chetty, Karl Woodbridge, Wenda Li, Robert Piechocki
2017 arXiv   pre-print
Detection and interpretation of human activities have emerged as a challenging healthcare problem in areas such as assisted living and remote monitoring. Besides traditional approaches that rely on wearable devices and camera systems, WiFi based technologies are evolving as a promising solution for indoor monitoring and activity recognition. This is, in part, due to the pervasive nature of WiFi in residential settings such as homes and care facilities, and unobtrusive nature of WiFi based
more » ... g. Advanced signal processing techniques can accurately extract WiFi channel status information (CSI) using commercial off-the-shelf (COTS) devices or bespoke hardware. This includes phase variations, frequency shifts and signal levels. In this paper, we describe the healthcare application of Doppler shifts in the WiFi CSI, caused by human activities which take place in the signal coverage area. The technique is shown to recognize different types of human activities and behaviour and be very suitable for applications in healthcare. Three experimental case studies are presented to illustrate the capabilities of WiFi CSI Doppler sensing in assisted living and residential care environments. We also discuss the potential opportunities and practical challenges for real-world scenarios.
arXiv:1712.03401v1 fatcat:bfgcwmeycfhnhfmjnsemdhewdu