A New Approach to Learning in Neuromorphic Hardware

Simon Friedmann
2013
Diese Doktorarbeit stellt einen neuartigen, besonders flexiblen Zugang zum Lernen in durch das Gehirn inspirierten Rechensystemen dar. Ein klassischer Digitalprozessor wurde mit lokaler, analoger Verarbeitung kombiniert, um Flexibilität und Effizienz zu erreichen. Insbesondere erlaubt dies die Umsetzung der modulierten spike-timing dependent plasticity Lernregel. Dieser Ansatz wurde in ein abstraktes, hybrides Hardwaremodell formalisiert. Mit diesem Modell wurde Belohnugslernen anhand eines
more » ... beispiels simuliert, um die Auswirkungen der Hardwareeinschränkungen abzuschätzen. Um die Machbarkeit der vorgeschlagenen Architektur zu ergründen wurde ein synthetisierbarer Plastizitätsprozessor entworfen und mittels des allgemeinen Core-Mark Benchmarks getestet (Bestes Ergebnis: 1.89 pro MHz). Der Prozessor wurde auch als Teil eines 65 nm Prototypenchips produziert, auf dem er eine Fläche von 0.14 mm 2 belegt und eine maximale Taktfrequenz von 769 MHz erreicht. Zunächst wurde eine nicht-programmierbare Plastizitätsimplementierung entwickelt, die jetzt Teil des sich in Betrieb befindenden BrainScaleS wafer-scale Systems ist. Später wurde dieser Entwurf um einen Plastizitätsprozessor erweitert, um die vorgeschlagene hybride Architektur zu verwirklichen. Simulationen zeigen eine Geschwindigkeitsverbesserung von 42 % gegenüber der nicht-programmierbaren Variante. Aus der Vorbereitung für die Produktion ergibt sich ein Flächenbedarf von 6.2 % der Gesamtfläche.
doi:10.11588/heidok.00015359 fatcat:2h3ekeqepnh3xlxkxxkpkbhfwi