Reliable Method for Driving Events Recognition

D. Mitrovic
2005 IEEE transactions on intelligent transportation systems (Print)  
Motor vehicles greatly influence human life but are also a major cause of death and road congestion, which is an obstacle to future economic development. We believe that by learning driving patterns, useful navigation support can be provided for drivers. In this paper, we present a simple and reliable method for the recognition of driving events using hidden Markov models (HMMs), popular stochastic tools for studying time series data. A data acquisition system was used to collect longitudinal
more » ... d lateral acceleration and speed data from a real vehicle in a normal driving environment. Data were filtered, normalized, segmented, and quantified to obtain the symbolic representation necessary for use with discrete HMMs. Observation sequences for training and evaluation were manually selected and classified as events of a particular type. An appropriate model size was selected, and the model was trained for each type of driving events. Observation sequences from the training set were evaluated by multiple models, and the highest probability decides what kind of driving event this sequence represents. The recognition results showed that HMMs could recognize driving events very accurately and reliably. Index Terms-Driving events, hidden Markov models (HMM), pattern recognition. Dejan Mitrović received the M.Sc.
doi:10.1109/tits.2005.848367 fatcat:nfbmevtibjdm5f4ffwoqdgycl4