Submodular dictionary learning for sparse coding

Zhuolin Jiang, Guangxiao Zhang, L. S. Davis
2012 2012 IEEE Conference on Computer Vision and Pattern Recognition  
A greedy-based approach to learn a compact and discriminative dictionary for sparse representation is presented. We propose an objective function consisting of two components: entropy rate of a random walk on a graph and a discriminative term. Dictionary learning is achieved by finding a graph topology which maximizes the objective function. By exploiting the monotonicity and submodularity properties of the objective function and the matroid constraint, we present a highly efficient
more » ... ficient greedy-based optimization algorithm. It is more than an order of magnitude faster than several recently proposed dictionary learning approaches. Moreover, the greedy algorithm gives a near-optimal solution with a (1/2)-approximation bound. Our approach yields dictionaries having the property that feature points from the same class have very similar sparse codes. Experimental results demonstrate that our approach outperforms several recently proposed dictionary learning techniques for face, action and object category recognition.
doi:10.1109/cvpr.2012.6248082 dblp:conf/cvpr/JiangZD12 fatcat:i4ksy455yfd5hjj4sgzvgakvei