Numerical Study of Laminar Flow Forced Convection of Water-Al2O3Nanofluids under Constant Wall Temperature Condition

Hsien-Hung Ting, Shuhn-Shyurng Hou
2015 Mathematical Problems in Engineering  
This numerical study is aimed at investigating the forced convection heat transfer and flow characteristics of water-based Al2O3nanofluids inside a horizontal circular tube in the laminar flow regime under the constant wall temperature boundary condition. Five volume concentrations of nanoparticle, 0.1, 0.5, 1, 1.5, and 2 vol.%, are used and diameter of nanoparticle is 40 nm. Characteristics of heat transfer coefficient, Nusselt number, and pressure drop are reported. The results show that heat
more » ... transfer coefficient of nanofluids increases with increasing Reynolds number or particle volume concentration. The heat transfer coefficient of the water-based nanofluid with 2 vol.% Al2O3nanoparticles is enhanced by 32% compared with that of pure water. Increasing particle volume concentration causes an increase in pressure drop. At 2 vol.% of particle concentration, the pressure drop reaches a maximum that is nearly 5.7 times compared with that of pure water. It is important to note that the numerical results are in good agreement with published experimental data.
doi:10.1155/2015/180841 fatcat:khrdixbd4bckdezbqdrpmb3jbu