A Study of Weisfeiler-Leman Colorings on Planar Graphs

Sandra Kiefer, Daniel Neuen, Mikołaj Bojańczyk, Emanuela Merelli, David P. Woodruff
2022
The Weisfeiler-Leman (WL) algorithm is a combinatorial procedure that computes colorings on graphs, which can often be used to detect their (non-)isomorphism. Particularly the 1- and 2-dimensional versions 1-WL and 2-WL have received much attention, due to their numerous links to other areas of computer science. Knowing the expressive power of a certain dimension of the algorithm usually amounts to understanding the computed colorings. An increase in the dimension leads to finer computed
more » ... gs and, thus, more graphs can be distinguished. For example, on the class of planar graphs, 3-WL solves the isomorphism problem. However, the expressive power of 2-WL on the class is poorly understood (and, in particular, it may even well be that it decides isomorphism). In this paper, we investigate the colorings computed by 2-WL on planar graphs. Towards this end, we analyze the graphs induced by edge color classes in the graph. Based on the obtained classification, we show that for every 3-connected planar graph, it holds that: a) after coloring all pairs with their 2-WL color, the graph has fixing number 1 with respect to 1-WL, or b) there is a 2-WL-definable matching that can be used to transform the graph into a smaller one, or c) 2-WL detects a connected subgraph that is essentially the graph of a Platonic or Archimedean solid, a prism, a cycle, or a bipartite graph K_{2,𝓁}. In particular, the graphs from case (a) are identified by 2-WL.
doi:10.4230/lipics.icalp.2022.81 fatcat:awelidk5nng5bbeyj7oyzv2aji