Histograms of Oriented Gradients for Landmine Detection in Ground-Penetrating Radar Data

Peter A. Torrione, Kenneth D. Morton, Rayn Sakaguchi, Leslie M. Collins
<span title="">2014</span> <i title="Institute of Electrical and Electronics Engineers (IEEE)"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/4odsbtjobjalfki6xxabjpdu6y" style="color: black;">IEEE Transactions on Geoscience and Remote Sensing</a> </i> &nbsp;
Ground-penetrating radar (GPR) is a powerful and rapidly maturing technology for subsurface threat identification. However, sophisticated processing of GPR data is necessary to reduce false alarms due to naturally occurring subsurface clutter and soil distortions. Most currently fielded GPR-based landmine detection algorithms utilize feature extraction and statistical learning to develop robust classifiers capable of discriminating buried threats from inert subsurface structures. Analysis of
more &raquo; ... se techniques indicates strong underlying similarities between efficient landmine detection algorithms and modern techniques for feature extraction in the computer vision literature. This paper explores the relationship between and application of one modern computer vision feature extraction technique, namely histogram of oriented gradients (HOG), to landmine detection in GPR data. The results presented indicate that HOG features provide a robust tool for target identification for both classification and prescreening and suggest that other techniques from computer vision might also be successfully applied to target detection in GPR data. Index Terms-Computer vision, edge histogram descriptors, ground-penetrating radar (GPR), histogram of oriented gradients (HOG), random forest.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tgrs.2013.2252016">doi:10.1109/tgrs.2013.2252016</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/enykrxyjufd4nliqjfs6dpc7rm">fatcat:enykrxyjufd4nliqjfs6dpc7rm</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180724032856/https://ieeexplore.ieee.org/ielx7/36/6685854/06517972.pdf?tp=&amp;arnumber=6517972&amp;isnumber=6685854" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/05/f5/05f51439859b8044b66fb22d844b3fbe2954501e.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1109/tgrs.2013.2252016"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> ieee.com </button> </a>