A Language for Describing Optimization Strategies [article]

Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch, Michel Steuwer
2020 arXiv   pre-print
Optimizing programs to run efficiently on modern parallel hardware is hard but crucial for many applications. The predominantly used imperative languages - like C or OpenCL - force the programmer to intertwine the code describing functionality and optimizations. This results in a nightmare for portability which is particularly problematic given the accelerating trend towards specialized hardware devices to further increase efficiency. Many emerging DSLs used in performance demanding domains
more » ... as deep learning, automatic differentiation, or image processing attempt to simplify or even fully automate the optimization process. Using a high-level - often functional - language, programmers focus on describing functionality in a declarative way. In some systems such as Halide or TVM, a separate schedule specifies how the program should be optimized. Unfortunately, these schedules are not written in well-defined programming languages. Instead, they are implemented as a set of ad-hoc predefined APIs that the compiler writers have exposed. In this paper, we present Elevate: a functional language for describing optimization strategies. Elevate follows a tradition of prior systems used in different contexts that express optimization strategies as composition of rewrites. In contrast to systems with scheduling APIs, in Elevate programmers are not restricted to a set of built-in optimizations but define their own optimization strategies freely in a composable way. We show how user-defined optimization strategies in Elevate enable the effective optimization of programs expressed in a functional data-parallel language demonstrating competitive performance with Halide and TVM.
arXiv:2002.02268v1 fatcat:4loopvpmnneszn5ny34wnlsb2u