A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Self-Supervised Representation Learning: Introduction, Advances and Challenges
[article]
2021
arXiv
pre-print
Self-supervised representation learning methods aim to provide powerful deep feature learning without the requirement of large annotated datasets, thus alleviating the annotation bottleneck that is one of the main barriers to practical deployment of deep learning today. These methods have advanced rapidly in recent years, with their efficacy approaching and sometimes surpassing fully supervised pre-training alternatives across a variety of data modalities including image, video, sound, text and
arXiv:2110.09327v1
fatcat:qoprtdh4rzg6lcylgn5rafubpe