Development of Real-Time River Flow Forecasting Model with Data Assimilation Technique
자료동화 기법을 연계한 실시간 하천유량 예측모형 개발

Byong-Ju Lee, Deg-Hyo Bae
2011 Journal of Korea Water Resources Association  
The objective of this study is to develop real-time river flow forecast model by linking continuous rainfall-runoff model with ensemble Kalman filter technique. Andong dam basin is selected as study area and the model performance is evaluated for two periods, 2006. 7.1∼8.18 and 2007. 8.1∼9.30. The model state variables for data assimilation are defined as soil water content, basin storage and channel storage. This model is designed so as to be updated the state variables using measured inflow
more » ... g measured inflow data at Andong dam. The analysing result from the behavior of the state variables, predicted state variable as simulated discharge is updated 74% toward measured one. Under the condition of assuming that the forecasted rainfall is equal to the measured one, the model accuracy with and without data assimilation is analyzed. The model performance of the former is better than that of the latter as much as 49.6% and 33.1% for 1 h-lead time during the evaluation period, 2006 and 2007. The real-time river flow forecast model using rainfall-runoff model linking with data assimilation process can show better forecasting result than the existing methods using rainfall-runoff model only in view of the results so far achieved.
doi:10.3741/jkwra.2011.44.3.199 fatcat:bvgeq7u57nairhzkk5ufsoa3w4