Limit Theorems for Beta-Jacobi Ensembles [article]

Tiefeng Jiang
<span title="2009-11-11">2009</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
For a beta-Jacobi ensemble determined by parameters a_1, a_2 and n, under the restriction that the three parameters go to infinity with n and a_1 being of small orders of a_2, we obtain both the bulk and the edge scaling limits. In particular, we derive the asymptotic distributions for the largest and the smallest eigenvalues, the Central Limit Theorems of the eigenvalues, and the limiting distributions of the empirical distributions of the eigenvalues.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:0911.2262v1</a> <a target="_blank" rel="external noopener" href="">fatcat:2zjneetr2nc4tgehnkcm3zfyie</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>