Spline Smoothing Over Difficult Regions

Siem Jan Koopman, Soon Y. Wong
2008 Social Science Research Network  
Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen
more » ... bedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Abstract We consider the problem of smoothing data on two-dimensional grids with holes or gaps. Such grids are often referred to as difficult regions. Since the data is not observed on these locations, the gap is not part of the domain. We cannot apply standard smoothing methods since they smooth over and across difficult regions. More unfavorable properties of standard smoothers become visible when the data is observed on an irregular grid in a non-rectangular domain. In this paper, we adopt smoothing spline methods within a state space framework to smooth data on one-or two-dimensional grids with difficult regions. We make a distinction between two types of missing observations to handle the irregularity of the grid and to ensure that no smoothing takes place over and across the difficult region. For smoothing on two-dimensional grids, we introduce a two-step spline smoothing method. The proposed solution applies to all smoothing methods that can be represented in a state space framework. We illustrate our methods for three different cases of interest.
doi:10.2139/ssrn.1304656 fatcat:2f3sndbkxjbefa2wc2hdabd6au